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SUMMARY 

Seven leading iterative methods for non-symmetric linear systems (GMRES, BCG, QMR, CGS, Bi- 
CGSTAB, TFQMR and CGNR) are compared in the specific context of solving the advection4ispersion 
equation by a classic approach: The space derivatives are approximated by linear finite elements while an 
implicit scheme is used to integrate the time derivatives. Convergence formulas that predict the behaviour of 
the iterative methods as a function of the discretization parameters are developed and validated by 
experiments. It is shown that all methods converge nicely when the coefficent matrix of the linear system is 
close to normal and the finite element approximation of the advection4ispersion equation yields accurate 
results. 
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INTRODUCTION 

In this paper we compare seven leading iterative methods for non-symmetric systems of linear 
equations in the context of solving the advection-dispersion equation 

ac a 

Equation (1) is defined over a domain G c R3 with initial conditions and Dirichlet and Cauchy 
conditions on the boundary dG. The unknown function c represents the solute concentration, 
t and x i  are the time and spatial co-ordinates, vi is the velocity vector, and d, the dispersion 
tensor, defined as the sum of molecular diffusion and mechanical dispersion.' 

One of the most popular approaches for the solution of equation (1) consists of the finite 
element approximation of the space derivatives and a weighted finite difference scheme for the 
integration of the time derivatives. This approach requires the solution of a large but sparse 
system of linear equations in each iteration. Depending upon the weighting factors chosen for the 
time integration, the coefficient matrix of the linear system is either Symmetric and Positive 
Definite (SPD) or non-symmetric. 

The 'classical' Conjugate Gradient (CG) method' with preconditioning is one of the most 
powerful algorithms for the solution of sparse SPD linear systems. Eiermann et aL3 showed that 
the combination of the symmetric semi-implicit time integration scheme of Leismann and Frind4 
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and the classical CG method represents a robust and very efficient strategy for the solution of the 
advection-dispersion equation. 

We now return to a more popular class of non-symmetric schemes. In particular, we employ 
the Crank-Nicolson scheme and linear finite elements to approximate equation (1) by a sequence 
of non-symmetric linear systems. Seven leading CG-like methods are applied to the solution of 
these systems. Besides the well-known algorithms CGNR,' BCG5,6 and GMRES,7 we imple- 
mented several schemes published during the last years: CGS,* Bi-CGSTAB,' QMR'O. l1  and 
TFQMR." We recall that excellent review papers presenting these methods have been published 
by Saad,13 van der Vorst14 and Freund et a l l 5  Nachtigal et a2.I6 constructed a set of simple 
artificial examples to illustrate the significant differences in capabilities between CGNR, GMRES 
and CGS. 

The outline of this paper is as follows. In Section 2 we review key issues related to the 
convergence properties of CG-like schemes. The discretization techniques and a set of model 
problems used to generate test linear systems from the advection-dispersion equation are briefly 
presented in Section 3. In Section 4 we apply GMRES and CGNR to the solution of a one- 
dimensional model problem and estimate the convergence rates as a function of the discretization 
parameters. Additionally, we look for those parameters that produce solutions of similar accu- 
racy with minimal computational effort. The theoretical results are validated by numerical 
experiments performed with all considered CG-like methods in Section 5. 

2. CG-LIKE ALGORITHMS 

We apply the algorithms GMRES, BCG, QMR, CGS, Bi-CGSTAB, TFQMR and CGNR to the 
solution of the system of linear equations 

Ac = b, (2) 

where A€lWNxN and c,b€RN. The considered algorithms are extensions of the classical CG- 
method' to non-symmetric systems. 

CG-like algorithms seek the kth approximate solution ck to equation (2) from the subspace 
co+Kk(rO,A), where Kk(ro,A)=span{ro ,Aro, .  . ., Ak-lro}  is the kth Krylov subspace gener- 
ated by the coefficient matrix A and the initial residual vector ro = b-Aco. The residual vector of 
the kth step rk = b - ACk can be written as 

(3) rk =rO - Aqk - 1 (A)rO =pk(A)rO, 

where qk-lEnk-1 is a polynomial of degree at most k-1  and Pk(Z)=1-Zqk-I(Z)Ent with 
pk(O)= 1. n k  denotes the set of all polynomials of degree at most k. 

Faber and Mante~ffel '~ \demonstrated that with a few exceptions, CG-like schemes cannot 
satisfy the following properties simultaneously: 

(a) construct iterates c k  that minimize the residual vector in some norm, i.e. 11 rk 1) =J(rt rk) is 
minimal for all CkEco+Kk(ro,A), 

(b) find ck by short recurrence relations such that the work and storage requirements remain 
small and constant while the iterative process moves forward. (Note that the classical CG 
scheme for SPD matrices is the most remarkable exception from this rule). 

We subdivide the implemented CG-like schemes into four groups according to their conver- 
gence properties: 
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2.1. Residual minimization schemes (GMRES) 

GMRES7 constructs iterates that satisfy the residual minimization property 

11 rk 112= min Ilp(A)rO 112 
P E n , ,  P(0)' 1 

(4) 

The approximate solution Ck is computed by first creating an orthonormal basis for the Krylov 
subspace Kk(ro, A )  and then solving a least-squares problem to determine the residual that 
satisfies equation (4). Saad and Schultz7 showed that the least-squares problem has unique 
solution and consequently GMRES cannot break down. Moreover, since the residual norm is 
minimized in each step, it cannot increase while the iteration proceeds. 

The most important drawback of the GMRES iteration stems from the fact that the Arnoldi 
orthogonalization procedure requires the storage of k vectors and the execution of O ( k )  vector 
operations in each step. This makes the GMRES scheme very expensive when k increases. To 
limit the work and storage, Saad and Schultz7 proposed the truncated version GMRES(m) that 
restarts the original algorithm after m steps, where m is some fixed parameter. Similar to the 
generic algorithm, the restarted version does not break down. However, the appropriate selection 
of m often requires additional experiments since the iterative process may begin to converge only 
after m had reached a certain value. 

Equation (4) indicates that the convergence speed of GMRES depends upon the residual 
polynomial p ( A ) ,  i.e. IIrkI12 shrinks fast when IIp(A) is small. Assume that matrix A is 
diagonalizable, i.e. there exists an invertible matrix TeRN such that T-  'AT has diagonal form. 
Saad and Schultz7 showed that the convergence rate of GMRES is bounded above by 

I K ( T )  min maxIp(A,)I, (5 )  
1 1  rk 11 2 

I l ~ o I I 2  P E ~ , , P ( O ) = I  & o h  

where A = { A', . . . , AN} is the spectrum of A and IC( T) = 11 TI1 11 T-  11 is the condition number of 
any matrix T of eigenvectors of A. 

In practice, the use of equation ( 5 )  is limited to few special problems since neither the solution of 
the complex approximation problem of minimizing maxnis,,lp(Ai)l nor the estimation of K( T) are 
trivial. Moreover, if A is not normal and K( T) is large, any attempt to estimate the convergence of 
GMRES based on eigenvalues estimates may have little or no practical significance.I8 This 
assertion is sustained by the examples presented in Section 4. 

2.2. Lanczos-type schemes (BCG, QMR) 

The Bi-Conjugate Gradient (BCG) and the Quasi-Minimal Residual (QMR) 
method" seek the kth approximate solution Ck to the linear system of equation (2) from the same 
Krylov subspace co +&(TO, A) as GMRES. By contrast to GMRES however, the 2-norm of the 
residuals computed by BCG and QMR do not satisfy the minimization property given by 
equation (4). Moreover, BCG and QMR employ the non-symmetric Lanczos process to generate 
basis vectors for the Krylov subspace, instead of the Arnoldi orthogonalization procedure used 
by GMRES. 

The non-symmetric Lanczos process reduces matrix A to a tridiagonal form. Moreover, it 
generates bi-orthogonal basis vectors for the Krylov subspaces using only a pair of three-term 
recurrences (for details see Golub and van LoanIg). Consequently, the Lanczos process can be 
completed with little work and storage per iteration. An important drawback of the Lanczos 
process is that it can breakdown before an invariant subspace is found for A. In most cases such 
unwanted terminations can be avoided with the help of so called 'look-ahead' steps2' 
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BCG generates the same sequences of bi-orthogonal vectors as the Lanczos process. The 
coefficients of the recurrence relations are obtained by factorizing a tridiagonal matrix without 
pivoting. This LU-factorization is an important source of instability which partially explains the 
erratic behaviour of the convergence curves of BCG. Moreover, it increases the danger of 
breakdowns, since the BCG iteration cannot be continued when the LU-decomposition does not 
exist." To the best of our knowledge, no convergence formula is available for BCG. 

The QMR iteration calls the (standard or look-ahead) Lanczos process to generate pairs of 
bi-orthonormal vectors. The recurrence relations are updated by applying a least-squares proced- 
ure 'quasi-minimization' to only one part of the residual expression. QMR can be viewed as 
a more stable implementation of BCG. The least squares procedure always has unique solution in 
contrast to the LU-factorization of BCG. Thus, an important source of breakdown and instabili- 
ties is eliminated. Freund and Nachtigal" proposed a convergence formula for QMR formally 
similar to the one given in equation (4). In contrast to GMRES, however, no convergence 
estimates based on this formula are employed in this work, since we could not evaluate it for the 
parameters of the model problems presented in the next section. The implemented version of the 
QMR algorithm is based on the two-term recurrencies approach without look-ahead developed 
by Freund and Nachtigal." 

Since GMRES minimizes the residual norm (equation (4)) in each step while BCG and QMR 
do not, we expect the former scheme to converge in a smaller number of iterations than the latter 
ones. BCG and QMR perform matrix-vector multiplications with AT. When A has irregular 
sparsity, additional work and storage are needed to make AT available for multiplication. This 
drawback of BCG and QMR motivated the development of Lanczos schemes that do not involve 
the transpose matrix. 

2.3. Transpose-free Lanczos-type schemes (CGS, BCCGSTA B, TFQMR) 

We have implemented three Lanczos-type schemes that do not involve matrix-vector products 
with AT. While CGS is based upon a modification of the BCG scheme, Bi-CGSTAB and TFQMR 
can be viewed as further modifications of CGS. In exact arithmetic, all of them will break down 
every time BCG breaks down. 

Sonnenveld' was the first to design a transpose free scheme, called the 'Conjugate Gradient 
Squared' (CGS) method. He observed that the scalar products of BCG can be rewritten in such 
a way that the matrix-vector multiplications with A' are eliminated from the original BCG 
scheme. The residual vector rk of the modified CGS scheme is proportional to the squared 
residual polynomial pk(A) of BCG. Since the rate of convergence of BCG depends upon pk(A) 
(conform equation ( 3 ) )  and that of CGS upon (pk(A))2 ,  we expect CGS to converge or diverge 
faster than BCG by a factor between one and two. Moreover, the convergence curves of CGS are 
even more erratic than those of BCG. 

To smoothen the erratic behaviour of CGS, van der Vorstg replaced (pr (  A))' by a product of 
two polynomials, i.e. p k ( A ) s k ( A ) ,  where skenk is a polynomial of degree k ,  whose coefficients are 
updated recursively using a local steepest descent procedure. The convergence curves of the 
resulting scheme, called Bi-CGSTAB, are smoother indeed than those of CGS. However, 
Bi-CGSTAB is not necessarily more stable. The stagnation of the steepest descent compon- 
ent represents an additional source of breakdowns. Examples where CGS converges while 
Bi-CGSTAB does not are presented by Peters." Note that examples demonstrating the opposite 
can be constructed as well (see, e.g. van der Vorstg). 

Freund12 proposed another smoothly converging variant of CGS called the Transpose Free 
Quasi-Minimal Residual (TFQMR) algorithm. The TFQMR scheme is based on the observation 



NON-SYMMETRIC CG-LIKE SCHEMES 959 

that CGS does not use all available search directions when it generates a new approximate 
solution. A quasi-minimal residual procedure, similar to that used by the original QMR method, 
determines the coefficients of the relation between the new iterate and the search directions. 
TFQMR can be obtained from CGS by changing a few lines of the code. 

The convergence properties of Bi-CGSTAB and TFQMR are not well understood. Relying on 
the resemblance of these algorithms to CGS, we expect them to converge or diverge faster than 
BCG or QMR by a factor between one and two. 

2.4. CG applied to normal equations (CGNR) 

equations 

where AT denotes the transpose of the coefficient matrix. While the letter ‘ N  in CGNR points at 
the fact that the coefficient matrix of equation (6) is normal, the letter ‘ R  suggests that this version 
manipulates the expression of the residual during the iteration. The code used in our tests is based 
on the ‘adjusted’ scheme of Bjoerk and Elf~ing.’~ 

In contrast with the schemes described previously, CGNR seeks the kth approximate solution 
from the subspace co + &( ATrO, ATA). The 2-norm of the residual vector is minimized in each 
step 

CGNR is nothing but the classic CG scheme of Herstenes and Stiefel applied to the system of 

ATAc=A’rb,  (6) 

(7) 11 rk 11 2 = min 11 p (  A A T ) r O  11 2 * 

P € H , .  P(0) = 1 

Moreover, thanks to the CG connection, a three-term recurrence can be used to determine each 

Recall that the eigenvalues of the normal matrix AAT are contained in the interval 

Replacing the polynomial p by the suitably scaled kth Chebyshev polynomial on C2 and using 

new approximate solution. 

C2 = [clfiin, 0 2 ~ ~ 3 ,  where emin and emax are the extreme singular values of A. 

some elementary estimates the following convergence formula is obtained: 

#(A)-1 
II ro II 2 

where ~ ( A ) = c ~ ~ ~ / c , , , ~ , ,  is the condition number of A. Inequality equation ( 8 )  indicates that the 
convergence behaviour of CGNR is determined by the singular values of A rather than eigen- 
values. Moreover, since the eigenvalues of AAT are equal to the squared singular values of A, the 
convergence can be very slow for matrices with moderate to large condition numbers. Neverthe- 
less, CGNR can be an effective choice for matrices with certain symmetries of the spectrum, like, 
e.g. shifted skew-symmetric matrices.’ 

3. TEST LINEAR SYSTEMS 

3.1. Discretization techniques 

advection-dispersion equation (1). The following matrix equation is obtained: 
We apply the Galerkin weighted residual method, as described by Pinder and Gray’“ to the 

(9) 
ac 
at 

M - + ( V +  D + Q + P)c  = QcR , 
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where c contains the unknown values c , ( t )  of the concentration at the N nodes of the finite 
element mesh. The coefficients of cR are known concentration values of the fluid entering the 
domain through some parts of the boundary 8G. The entries of the matrices M ,  V, D, Q and P are 
given by 

M m n =  4m4ndG9 (10) 
J-G 

where 4, are Chapeau basis functions. The fluid velocity v i  and the dispersion coefficient d i j  in the 
expressions (10)-(14) are assumed to be piecewise constant over the elements. While ni in equation 
(14) are the components of the outward pointing normal on the boundary aG, dij in equation (13) 
denotes the Kronecker delta function. 

Equation (9) is integrated in time using an implicit weighted finite difference scheme. A non- 
symmetric system of linear equations of the form given in equation (2) is obtained upon setting 

1 , 
M - (1 - 0) ( V +  D + Q + P )  C' + OQ c;+~' + (1 - O )  Q c;, (15) 1 

and c=c '+~ ' .  The top notations t + A t  and t denote the new and old time levels, At is the time step 
and 0 is a weighting factor (0.5 I 8 I 1.0). Recall that the popular Crank-Nicolson scheme is 
obtained for 0 = 0 5  

It is well known that the 'consistent' FE formulation described by equations (9)-(15) is 
unconditionally stable but not always accurate. In particular when the advective components of 
equation (1) dominate and the discretization is not suitably chosen, oscillations of the solution 
occur. Daus et u E . ~ ~  showed that violations of the discretization criteria 

P 
2 

CI- and C I 1  

lead to a gradual deterioration of the solution accuracy of the one-dimensional form of equation 
(1). While P= vAx/d denotes the grid Peclet number, C -  v A t / A x  is the Courant number and A x  is 
the grid spacing. Their experiments suggest that the consistent FE formulation is more sensitive 
to violations of the latter criterion. In addition, Dause et showed that discretizations for 
which the product 

P" = CP (17) 
is constant, produce the same error. P,-u2At jd  is called the 'advective' Peclet number. 
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3.2. Model problems 

The discretization techniques outlined in equations (9)-(15) are applied to the solution of three 
model problems. The aduancingfront problem and the diffusion in a plane shearflow problem are 
part of the set proposed as standard reference for accuracy measures by Baptista et aLZ6 at the 
Convection-Diffusion Forum of the VII International Conference on Computational Methods in 
Water Resources. The convergence results obtained for the aduancingfront problem are also valid 
for the concentration hill problem of the same set, since the discretization of both problems yield 
the same coefficient matrix. The two-dimensional plane dispersion problem was employed by 
Kinzelbach and Frind2’ to illustrate the effects of grid anisotropy on the accuracy of finite 
element discretizations. 

Since the aim of this work is to compare the capabilities of CG-like methods rather than 
perform accuracy tests, the specification data for the model problems were varied over a large 
range of values. Many of the employed discretization parameters produce accurate results, but 
some of them do not. The latter are used to demonstrate how the behaviour of the CG-like 
methods changes when the discretization is not suitably chosen. 

Aduancing front. This problem concerns the one-dimensional form of the advection4iffusion 
equation 

with initial and boundary conditions 

c ( x , t ) = O  t = t o ,  O l X S L ,  

c ( x , t ) = l  t > t o ,  x = o ,  

c ( x , t ) = O  t > t o ,  x = L .  

The problem domain of length L= 1000 is discretized in 100 elements of equal size Ax= 10. 
While the magnitude of the velocity u is equal to unity, the time step At and diffusion parameter 
d are varied such that 1 I P I 10 and 0 2  I P, I 10. 

The discussion in Section 4 is simplified without loss of generality by imposing a Dirichlet 
boundary condition in x = L .  Any other type of boundary condition would rank-one modify the 
coefficient matrix. Eiermann et a1.j showed that the consequence of this modification for the 
spectrum of eigenvalues of A is negligible for large values of N .  

Shear JEow. This problem concerns the special two-dimensional case of equation (1) 

defined over a square domain with the side length L=4OOO and the initial and boundary 
conditions 

c ( x , y , t ) = O  t = t o ,  O l X l L ,  O l y l L ,  

c (x , y , t )=O t > t o ,  x = L / 5 ,  y = L / 2 .  

The domain is discretized in triangles obtained by halving rectangular elements of side length 
Ax = Ay = 200. The parameters defining the velocity field uo = 0 and o= 5 x lov4 remain un- 
changed for all experiments. The time step and diffusion parameter are defined such that the 
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Peclet number and advective Peclet number vary within the intervals 

P = f i , A x / d e [ l ,  . . ., lo] and P,=17;At /d~[0 .2 , .  . ., lo], 

where 6, = uo + uL represents the maximal velocity. 

Plane dispersion. This problem concerns the two-dimensional form of the advection-disper- 
sion equation (equation (1)) defined over a square of length L. Scheidegger’s formulas’ are 
employed to calculate the dispersion coefficients. Thus, for the components of the velocity field 
ox= o,, = 1 and the longitudinal and transversal dispersivity coefficients equal to 100  and 10, the 
entries of the dispersion matrix are d,, = d,, = 110/, /2 and d,, = 90/,/2, respectively. The initial 
and boundary conditions and the intervals of variation for P = v,Ax/dx, and P ,  = v ~ , A t / d , ,  are 
identical to those of the shear flow problem. Again, right isosceles of equal length are used for 
discretization, but this time the side length A x = A y =  L /20  and time step are varied. 

4. CONVERGENCE ESTIMATES 

We apply GMRES and CGNR to the solution of the advancing-front problem and estimate the 
convergence rates as a function of the discretization parameters. 

4.1. GMRES 

The discretization of the advancing front problem yields the tridiagonal Toeplitz matrix 

A = tridiag(y, a, B)ER’ N, (20) 
where for 8=03 the non-zero entries of A are 

4P + 6C a=- 
3 c  ’ 

’= 6C 

Y =  

( 3 C + 2 ) P - 6 C  
7 

(- 3C+ 2 ) P - 6 C  
6C 

The eigenvalues of A are given by 

Aj = M + 2J(py) cos ( - ;il) ( j = l ,  2 , .  . . 

where we neglected a term of order ( l /N) ’ .  
We begin the calculation of the upper-bound of convergence of GMRES given in equation (5 )  

with the approximation of the quantity minPEnk, p ( o )  = 1 1  p (  A )  11 ’. The two cases are distinguished 
as follows: 

(a) The eigenvalues of A are real if and only if by 2 0, or equivalently, if 2 I P - 3CI 2 3PC is 
satisfied. In this case, it follows that 

amin ( A )  ‘V - 2 J(PY 1 and amax( A ) N a + 2 J(BY).  
(b) For by < 0 (or equivalently, 2 I P - 3C I < 3PC) the eigenvalues of A are no longer real. They 

are contained in an interval perpendicular to the real axis, namely in [a - ip, a + ip], where 
i 2 = - 1  and 

P = 2J( - BY ). 
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Relying on the assumption that the eigenvalues A j  of A are smoothly distributed over 
I=[A, , , (A) ,  A,,(A)] if py>O, or over J=[a-ip, cr+ip] if By<O, we replace maxl,jsNIp(Aj)l 
by either maxzEIlp(z)l if & > O ,  or maxzEJ\p(z)l i f B y < O .  Moreover, using the results provided by 
Eiermann et aL2' we obtain 

To calculate the quantity K (  T )  in expression (5) we proceed as follows: 

(a) First, observe that the eigenvectors of A are identical to those of the matrix tridiag(y, 0, B ) .  
Using the results presented by Eiermann29 (Ch. 1) we write that the eigenvector corres- 
ponding to Aj  has the expression 

t j = (  6lsin( 5). N + l  . ., 6Nsin( X ) ~ ~ C N ,  N f l  (23) 

where 6 = J ( I rib I ). 
(b) Then, write the matrix of eigenvectors T=[tl ,  . . ., tN] as the product of the matrices 

D=diag(h1, . . ., s N )  and Y=[vl ,  . . ., VN], where 

v j =  ( sin . ( - N + 1  ' j  ), . . ., sin( *)Y~V, N + l  

(c) Finally, using simple manipulations based on the identity 

we arrive at the following expression for the condition number of T 

where t = max { 6,1/6}. 

The substitution of K ( T )  (equation (24)) and minponk, p (o )= l  1 1  p(A")llz (equation (22)) in equa- 
tion (5) gives the following expression 

- (l-N)log,oz-q 
k =  

log10 x 9 

where Eis the ceiling on the iteration index k required to reduce the residual norm by the factor 
10-q. x is equal to x1 for , /(py)>O and to x 2  for J ( P y ) < O  (equation (22)). (The non-relevant 
special case py = 0, when matrix A is not diagonalizable, was omitted.) 

Peters30 showed that the convergence estimate given in equations (5) and (25) approximates the 
behaviour of GMRES accurately only when K (  T )  does not differ too much from unity, i.e. the 
matrix A is not too far from normal. This result confirms the elegant theory developed by 
Trefethen'* which asserts that for arbitrary matrices, for which K (  T )  is huge, the scalar approx- 
imation problem expressed by equation (5) should be redefined in terms of pseudo-spectra. 
Unfortunately, the convergence estimate based on the pseudo-spectrum of A is still too inaccurate 
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with respect to our problem. In contrast, we found that the empirical formula 
-? - 

k l =  
log,, +log10 7 

gives strikingly accurate estimates. We obtained equation (26) by (. . . mistakingly) using k as 
exponent instead of N - 1 in equation (24). Figure l(a) shows the relation between k; and the 
Peclet number and advective Peclet number for = 10 (see Figure 2(a) for comparison). 

4.2. CGNR 

The upper bound of convergence of CGNR given by equation (8) is a function of the condition 
number of A. To compute K ( A ) ,  we build explicitly the normal matrix 

ATA = pentadiag( c, b, a, b, c) ,  (27) 
where A is the tridiagonal Toplitz matrix given in equation (20) and the entries of the normal 
matrix in equation (27) are functions of the Peclet number and Courant number 

( Cz + 4)P2 + 8CP + 12C2 
2c2 a =  7 

8P2 - 12CP- 36C2 
2c2  

b =  , 

(-9C2+4)Pz-24CP+36C2 
36C2 

C =  

The eigenvalues of the normal matrix AAT are given by the expression 

Aj=  a + 2b cos (L) N + l  + 2c cos ( 3) N + l  ’ 

where, a term of order (1/N)2 is neglected (see, e.g. Reference 31). 

L 

W 
n 
= z 6 

4 

2 

2 4 6 8 10 
o d v e c t i v e  Pcclet Number advec t i ve Pec I e t Number 

Figure 1. (a) GMRES; (b) CGNR. The dependency of the convergence estimates k; (equation (26)) and k; (equation (30)) 
upon the Peclet number and advective Peclet number, for q= 10 
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2 4 6 0 i n  
odvecl ive Pec le t  Number odvect ive Pec le t  Number 

odvect i v e  P e c l e l  Number 

4 

2 

2 4 6 8 10 
odvecl ive Pec le t  Number 

Figure 2. Adoancingfiont: (a) GMRES; (b) CGNR (c) BCG, (d) CGS. The dependency of the number of iterations k upon 
the Peclet number and advective Peclet number, for 11 rk ( I2 5 

The condition number of A is given by one of the following expressions: 

for Ibls14cl 1 max( a + 2c f 2b, a - 2c - b2/4c) 
min( a + 2c k 2b, a - 2c - b2/4c) 

for lb1>14cJ. 1 max(a + 2c f 2b) 
min(a + 2c k 2b) 

To obtain the ceiling of the iteration index k required to reduce the residual norm by a factor 
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we introduce the value of # ( A )  computed in equation (29) into the expression 

--? - 
k z  = 

# ( A ) - 1  . 

Figure l(b) shows the surface plot of & as a function of the Peclet number and advective Peclet 
number, for -? = 10. The corresponding experimental results are shown in Figure 2(b). 

4.3. Reducing the number of iterations 

A major question for any practitioner who applies GMRES or CGNR to the solution of 
equation (9) is how to select the discretization parameters such that the solution of desired 
accuracy is obtained in the smallest number of iterations. Figure 1 indicates that the ceiling 
functions of GMRES kl (equation (26)) and CGNR E2 (equation (30)) build up local minima 
along the parabola 

P, = ~ 2 1 3 .  (31) 

Equation (31) holds when IC( T) defined in equation (24) is equal to unity, i.e. the coefficient 
matrix A is normal. Note that discretization parameters satisfying this ‘normality’condition, or 
equivalently P =  3C, always fulfill the first accuracy criterion given in equation (16). 

Recall that the accuracy of the Crank-Nicolson scheme increases for small time steps (see, e.g. 
Reference 32). Moreover, Figure 1 suggests that the selection of small time steps accelerate the 
convergence of GMRES and CGNR. This strategy is not necessarily advantageous since it 
increases the number of time steps and linear systems accordingly. The discretization parameters 
yielding a solution at the time t = constant, in the smallest number of iterations can be estimated 
for GMRES and CGNR by claculating the minima of the functions 

= k, /At (32) 

k ,̂ = k; /At ,  (33) 

and 

respectively. Similar to the functions plotted in Figure 1, k; and & have local minima along the 
parabola (31).30 

Up to this point, we focused on the convergence properties of GMRES and CGNR. Despite the 
simplicity of the problem we were not able to obtain an analytic estimate for the convergence of 
QMR. The fact that BCG and QMR converge in a larger number of iterations than GMRES and 
the assumption that CGS, Bi-CGSTAB and TFQMR converge about twice as fast as BCG are 
too vague estimates for reliable predictions. Nevertheless, since the Lanczos-type schemes and 
GMRES construct iterates in the same Krylov subspace, we expect them to respond similarly to 
changes of the discretization parameters. 

5. NUMERICAL EXPERlMENTS 

5.1. Model problems 

We present the results of several convergence tests performed with systems of equations 
stemming from the discretization of the problems described in Section 3. The surface plots in 
Figures 2-4 are obtained by interpolating the iteration number k required to reduce the residual 
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norm to I)rk112s lo-''. Each problem employs the same random starting vector. The right-hand 
side vector and starting vector are scaled such that 11 ro 

Aduancing front. Figure 2 illustrates the relation between the iteration indices of GMRES, 
CGNR, BCG and CGS and the parameters P and P, .  No preconditioning is employed, since the 
goal of this exercise is to validate the convergence formulas (26) and (30). As expected, the form of 
the interpolated surfaces of BCG and CGS is similar to that obtained for GMRES. While 
GMRES executes slightly less iterations than BCG, CGS converges about twice as fast. 

ShearJrow and plane dispersion. The matrices stemming from the discretization of these two 
problems, are diagonally scaled. Instead of solving the linear equations (2), we apply the CG-like 
algorithms to the system 

= 1. 

fi - Ac = 2- lb, (34) 
where I\;i=dia,/(ATA). 

To obtain the same order of complexity for all implemented schemes, i.e. number of floating 
point operations per iteration, the restarted version GMRES(20) is employed. Table I lists the 
relative amounts of time per iteration for all schemes. The values are obtained by dividing the 
measured CPU-time by the number of iterations for each scheme and then scaling the results with 
respect to the smallest one obtained for CGNR. The coefficient matrix of order 421 with 
9 non-zero diagonals is stored in 'compressed diagonal' form.33 Since the time required to 
perform matrix-vector multiplications with A and AT is the same for this particular storage 
scheme, the values displayed for BCG, QMR and CGNR in Table I look rather optimistic. 

Figure 3 shows the dependency of the number of iterations of GMRES(20), CGNR, BCG 
and CGS upon the Peclet number and advective Peclet number for the shear Jrow problem. 
Figure 4 illustrates the variation of the iteration indices of GMRES(20), CGNR, BCG and CGS 
for the plane dispersion problem. The convergence histories of QMR, Bi-CGSTAB and TFQMR 
are very similar to those of BCG and CGS and were not shown. Samples of the convergence 
histories of all implemented methods for the plane dispersion problem have been illustrated by 
Peters.30 

The experimental results do not differ from the analytic ones presented in the previous section. 
GMRES(20) requires more iterations than BCG and QMR when the iteration index is larger than 
the restart one since the global minimization property (equation (4)) is lost. CGNR is more 
exposed to over-unitary values of the Courant number than GMRES and the Lanczos schemes. 
The transpose-free Lanczos schemes converge in the smallest number of iterations. 

Table I. Relative time/iteration 

Scheme Value 

GMRES(2O) 
BCG 
QMR 
CGS 
Bi-CGSTAB 
TFQMR 
CGNR 

1.18 
1.06 
1.20 
1.03 
1 909 
1.13 
1.00 
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Figure 3. ShearJow: (a) GMRES; (b) CGNR; (c) BCG, (d) CGS. The dependency of the number of iterations k upon the 
Peclet number and advective Peclet number, for )I rt < 10- lo 

5.2. Particular cases 

Three particular cases based on the plane dispersion problem are considered: 

The explicit case. The time step and the parameter 8 act as weighting factors for the compo- 
nents of the coefficient matrix A (equation (15)). We observed that, if instead of the 
Crank-Nicolson scheme the fully implicit scheme (8 = 1) is chosen, the convergence speed of the 
CG-like schemes decreases. In contrast, if the explicit scheme (8 = 0) is selected, the convergence is 
optimal. The convergence history of all schemes is shown for the latter case in Figure 5(a). Matrix 
A is identical to the SPD matrix M (defined in equation (lo)), while BCG and QMR become 
equivalent to the classical CG method. The eigenvalues of A are located on the real axis and far 
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enough from origin (Figure 5(b)). Recall that the conditional stability of the explicit scheme 
requires the selection of small time steps. When the number of time steps is large, the total number 
of iterations may not be optimal any more. 

The pure dispersion case. Small Peclet numbers emphasize the presence of the dispersion 
component D in the coefficient matrix A. Matrix D has real positive eigenvalues but this is not 
necessarily an asset for convergence. Figure qa)  presents the convergence histories for the worst 
case involving small Peclet and large Courant numbers: the Courant number is infinite, the Peclet 
number is equal to zero and equation (1) reduces to the steady-state diffusion equation. The 
spectrum of A, illustrated in Figure qb), is uniformly distributed within a segment located on the 
positive half of the real axis, close to the origin. While the Lanczos methods require more than 
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one hundred iterations (Bi-CGSTAB is the fastest), GMRES(20) converges monotonically but 
very slowly. CGNR stagnates almost for more than 500 iterations before converging. In both 
cases presented in Figures 5 and 6,  the eigenvalues of ATA squares those of A.  

The pure advection case. This is the worst case for Lanczos schemes. The convergence histories 
are presented in Figure 7(a). An almost skew-symmetric matrix is obtained by making coefficient 
matrix A identical with the advection matrix V. The Peclet and Courant numbers are equal to 
infinity. The eigenvalues of A are located around the imaginary axis, as shown in Figure 7(b). 
Neither GMRES(20) nor the Lanczos methods converge. The only converging scheme is CGNR. 
The eigenvalues of matrix ATA are shown in Figure 7(c). 

6. FINAL REMARKS 

The purpose of this work was to understand the behaviour of non-symmetric CG-like schemes in 
the context of solving the advection-dispersion equation by the finite element method. We 
developed convergence estimates for some methods, applied them to selected reference problems 
and presented empirical evidence in support of the estimates. In addition, examples were 
constructed to illustrate the difference in capabilities between schemes. In order to obtain 
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a non-distorted picture of the relation between discretization and convergence, we employed 
neither 'hard' preconditioners, like incomplete factorizations, nor procedures that avoid break- 
downs, like look-ahead. 

All considered CG-like methods converge properly when the time and space discretization 
yield the accurate solution of the advection-dispersion equation. The fulfillment of the accuracy 
criterion (16) and normality condition (31) leads to an almost optimal convergence behaviour of 
all algorithms. If only few iterations are performed and the storage requirement does not increase 
too much, GMRES is a good choice. The non-restarted version minimizes the residual norm in 
each iteration step. Moreover, only one matrix-vector multiplication per iteration is needed. For 
problems involving more iterations, the transpose-free Lanczos schemes may be the best choice. 
They converge between one and two times faster than the other Lanczos schemes, perform 
a constant amount of work per iteration and can be implemented easily. Table I shows that CGS 
needs less time per iteration than other schemes. CGNR may be the only converging scheme for 
advective dominant problems, where the coefficient matrix is almost skew symmetric. However, 
CGNR squares the condition number of the coefficient matrix and performs poorly in most cases. 

Unfortunately, the application of the criteria (16) and (31) is not always possible. In the case of 
more complex problems, an obvious way to improve the convergence of the CG-like schemes is to 
decrease the size of the time step. The time step weights the contributions from the SPD mass 
matrix M to the coefficients of A.  The eigenvalues of matrix A are not determined solely by the 
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entries of M (equation (10)). However, large relative contributions from this SPD matrix keep the 
eigenvalues and singular values of A far from the origin of the co-ordinates system and ensure the 
fast convergence of CG-like methods. (Note that the use of the Crank-Nicolson scheme instead of 
the full implicit time marching scheme has a similar effect.) 

To demonstrate the importance of the time weighting, we consider an additional example: The 
shearjow problem is defined on a square domain of side length L=4OOO. This time isosceles of 
side length (Ax=Ay=20) are used and a system of linear equations with 40401 unknowns is 
obtained. A random function co(x, y, to)  with values between zero and unity describes the initial 
condition. The parameters of the velocity field are vo = 1 and o= 1 x (see equation (19)). The 
time step is At = 20 and the diffusion coefficient is equal to unity. The grid Peclet number varies 
along the vertical y-direction from 4 (for y =0) to 20 (for y =4OOO) while the Courant number goes 
from 1 to 5. 

The upper part of Table I1 shows the CPU-time measurements and the number of iterations 
required by CGS and GMRES(20) to reduce the residual norm to The experiments are 
performed on an IBM 3090 VF. The diagonal scaling (D) (cf. equation (34)) and an incomplete 
factorization (ILU) of the matrix are used as prec~nditioners.~~ CGS converges slowly and only 
after the ILU preconditioner is employed. GMRES(20) works better, but it still requires a large 
number of iterations. The lower part of Table I1 shows convergence results obtained for the same 
problem by halving the time step (At = 10). The smaller time step improves the accuracy and 
robustness of the solution and accelerates the convergence. The ILU preconditioner reduces 
further the number of iterations of both methods. Moreover, it helps GMRES to converge 
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Table 11. Convergence results 

Scheme No. iterations CPU time (s) 

D-CGS 
ILU-CGS 
D-GMRES(20) 
ILU-GMRES(20) 
D-CGS 
ILU-CGS 
D-GMRES(20) 
ILU-GMRES(20) 

- 
226 
154 
14 

44 
10 
53 
13 

- 

13-42 
6-46 
3-55 

1-83 
0.60 
2.22 
0-62 

without restarts. Even with twice as many time steps, the latter tests run much faster than the 
former ones. 

The experience of many researchers has proven that CG-like algorithms work effectively for 
different classes of linear systems. However, when applied to the finite element solution of the 
advection-dispersion equation, the efficiency of these schemes should not be taken for granted. If 
the discretization is not done with care, the grid Courant and Peclet numbers are high, CG-like 
algorithms perform poorly or even break down. The first and most natural step to improve the 
convergence is to change the discretization parameters such that a well-conditioned matrix is 
obtained. If then an efficient preconditioner is applied to the well-posed problem, the iterative 
schemes work very efficiently. Slow convergence should be a matter of concern not only because 
the solution requires much computer time, something may be wrong with the accuracy, as well. 
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